When expectations are not met: Immune responses to SARS-CoV-2 vaccination in the immunosuppressed

Michigan Rheumatism Society Annual Meeting 17 July 2022

Alfred H.J. Kim, MD, PhD Washington University School of Medicine

@alhkim

Disclosures: Alfred H.J. Kim, MD, PhD

I have no related financial interests to disclose

- Sponsored research agreements
 - GlaxoSmithKline
 - Foghorn Therapeutics
- Research grants
 - Rheumatology Research Foundation
 - Multiple Sclerosis Society
 - Helmsley Charitable Trust
 - NIH/NIAMS, NCATS

- Consulting/Speaker
 - Alexion Pharmaceuticals
 - AstraZeneca
 - Aurinia Pharmaceuticals
 - Exagen Diagnostics
 - GlaxoSmithKline
 - Kypha, Inc.
 - Pfizer, Inc.
- Royalties/Patent Beneficiary
 - Kypha, Inc. (US Patent 11029318B2)

Sections \equiv Q **∩** Home

____ Share

口 1736

Healt

Coronavirus vaccines may not work in some people. It's because of their underlying conditions.

Early research shows that 15 to 80 percent of people with certain medical conditions, such as specific blood cancers or organ transplants, are generating few antibodies after receiving coronavirus vaccines.

The Washington Post

Coronavirus U.S. map World map Vaccine tracker Vaccine FAQ Variants FAQ A pandemic year Coronavirus Living

"Risk is very different for people in my situation," said Maria Hoffman, a kidney transplant patient who works for the Medical University of South Carolina. (Brett Lemmo for The Washington Post)

By Ariana Eunjung Cha May 18, 2021 at 7:00 a.m. CDT

🛛 Add to list

Maria Hoffman feels as though she has been left behind. Her adopted hometown of Charleston, S.C., is hopping - with restaurants and bars fully open, park concerts in full swing and maskless friends

Latest Popular

The Atlantic

My Account

HEALTH

THE MILLIONS OF PEOPLE STUCK IN PANDEMIC LIMBO

What does society owe immunocompromised people?

By Ed Yong

John Stanmeyer / VII / Redux

FEBRUARY 16, 2022, 10:22 AM ET

SHARE 🗸

Protecting the immunosuppressed against COVID-19

- Immunosuppression increases risk of severe COVID-19, including death
 - BCDT, increased disease activity/PDN, JAKi, polytherapy including TNFi
- Variants emerge from patients with prolonged SARS-CoV-2 infection (>3 months)
 - Immunosuppression major risk factor in this scenario

Immunosuppression & COVID-19 severity

Gianfrancesco *et al*, *Ann Rheum Dis*, 2020 Schäfer *et al*, *Ann Rheum Dis*, 2021 Strangfeld *et al*, *Ann Rheum Dis*, 2021 Sparks *et al*, *Ann Rheum Dis*, 2021

Variant emergence in the immunosuppressed

Avanzato *et al*, *Cell*, 2020 Choi *et al*, *New Engl J Med*, 2020/Clark *et al*, *Cell*, 2021 Kemp *et al*, *Nature*, 2021 Troung *et al*, *eBioMedicine*, 2021 Corey *et al*, *New Engl J Med*, 2021

Outline

Exploration of the types of immune responses induced by vaccination • The Spike protein: the target for protective immunity Focus on <u>B cell responses</u>: how immunizing with one variant can protect against other

- variants
- The impact of immunosuppression on vaccine-induced immunity
 - Associations of specific MOAs on humoral responses
 - Nuances in <u>antibody quality</u>: lessons from TNF inhibition
 - Impact of holding medications: lessons from MTX

- Discussion on protection against variants of concern
- Early data on preventing severe infection

Role of providing additional doses: lessons from solid organ transplant pts and on BCDT

Pre-exposure prophylaxis: monoclonal antibodies (tixgevimab/cilgavimab)

Outline

Exploration of the types of immune responses induced by vaccination

- The Spike protein: the target for protective immunity
- variants
- The impact of immunosuppression on vaccine-induced immunity Associations of specific MOAs on humoral responses Nuances in antibody quality: lessons from TNF inhibition Impact of holding medications: lessons from MTX

 - Role of providing additional doses: lessons from solid organ transplant pts and on BCDT

- Discussion on protection against variants of concern
- Early data on preventing severe infection

Focus on <u>B cell responses</u>: how immunizing with one variant can protect against other

Pre-exposure prophylaxis: monoclonal antibodies (tixgevimab/cilgavimab)

SARS-CoV-2: Spike protein key to vaccine protection Most potently neutralizing mAbs recognize the RBD of Spike

Case et al., Virology, 2020 Errico et al., Cell Reports, 2021

Simple view of how vaccines works

Successful immune responses due to vaccination includes production of protective antibodies and generation of memory cells

work)

The College of Physicians of Philadelphia (https://www.historyofvaccines.org/content/how-vaccines-

How does immunizing against one variant protect us from several variants? Role of the germinal center

- The role of the germinal center reaction for highquality antibody production
 - Somatic hypermutation (SHM): this is good to enhance antibody diversity
 - Affinity maturation: this is good to increase antibody binding to antigen
 - Isotype switching: this is good to help with antibody

e-home point: when	
genicity papers, need to	cells
e samples are taken	a couple weeks to mature

- But what about this extrafollicular pathway?
 - Rapid onset of activity (within days)
 - Disadvantages
 - Attenuated proliferation: reduced SHM potential, reduced Ab diversity and binding strength
 - Minimal memory B cell formation Sar

Sanz et al., Front Immunol, 2019

Germinal centers persist after SARS-CoV-2 mRNA vaccination for months Likely >7 months

SARS-CoV-2 mRNA vaccines induce persistent human germinal centre responses

Nature | Vol 596 | 5 August 2021 | **109**

https://doi.org/10.1038/s41586-021-03738-2

Received: 8 March 2021

Accepted: 18 June 2021

Published online: 28 June 2021

Aaron J. Schn James Brett Ca Michael K. Kle Florian Kramn Ali H. Ellebed

Influenza vax: Turner et al, Nature, 2020

Outline

Exploration of the types of immune responses induced by vaccination • The Spike protein: the target for protective immunity Focus on B cell responses: how immunizing with one variant can protect against other

- variants
- The impact of immunosuppression on vaccine-induced immunity
 - Associations of specific MOAs on humoral responses
 - Nuances in <u>antibody quality</u>: lessons from TNF inhibition
 - Impact of holding medications: lessons from MTX

- Discussion on protection against variants of concern
- Early data on preventing severe infection

Role of providing additional doses: lessons from solid organ transplant pts and on BCDT

Pre-exposure prophylaxis: monoclonal antibodies (tixgevimab/cilgavimab)

Antibody responses in the immunosuppressed with IMIDs

Consensus: most can generate responses *immediately* after full series of

10

(Au/mL)

BCDT >> MMF >> GCC > MTX/AZA/JAKi/TNFi > immunocompetent

CÍD

ΗĊο

Germany (Schleswig-Holstein)

•	Study participants, n	Seropositivity rate, n (% of total)	Serum anti-S1/ S2 IgG titre, mean±SD, BAU/mL
	Controls, n=121	121 (100)	218.6±82.06
	Patients with AlIRD, n=686	590 (86.0)*	132.9±91.7*
	RA, n=263	216 (82.1)	108.7±84.7
	PsA, n=165	160 (96.9)	162.0±71.7
	AxSpA, n=68	67 (98.5)	173.1±90.1
	SLE, n=101	93 (92.1)	161.9±105.2
	IIM, n=19	7 (36.8)	42.9±62.6
	LVV, n=21	20 (95.2)	143.3±84.6
	AAV, n=26	8 (30.8)	40.3±73.2
	Other vasculitis, n=23	19 (86.6)	122.7±87.9

Israel (Tel Aviv)

Netherlands

Boekel et al, Lancet Rheumatol, 2021 Braun-Moscovici et al, Ann Rheum Dis, 2021 Connolly et al, Ann Intern Med, 2021 Deepak et al, Ann Intern Med, 2021 Furer et al, Ann Rheum Dis, 2021 Geisen et al, Ann Rheum Dis, 2021 Haberman et al, Ann Rheum Dis, 2021 Mahil et al, Lancet Rheumatol, 2021 Prendecki et al, Ann Rheum Dis, 2021 Ruddy et al, Ann Rheum Dis, 2021 Simon et al. Ann Rheum Dis. 2021

150

0000

Glucocorticoid immunogenicity Dose-dependence unclear

- •9-fold reduction (n=40) compared to immunocompetent
- Even some on low-dose (≤ 5 mg/day PDN equivalent) mounted very poor responses
 - May be confounded by concomitant medication use
 - Boekel et al, Lancet Rheumatol, 2021
 - Ruddy et al, Ann Rheum Dis, 2021

Deepak et al, Ann Int Med, 2021 Boekel et al, Lancet Rheumatol, 2021 Haberman et al, Ann Rheum Dis, 2021

Glucocorticoid immunogenicity Dose-dependence unclear

- 9-fold reduction (n=40) compared to immunocompetent
- Even some on low-dose (≤ 5 mg/day PDN equivalent) mounted very poor responses
 - May be confounded by concomitant medication use
 - Boekel et al, Lancet Rheumatol, 2021
 - Ruddy et al, Ann Rheum Dis, 2021

Ruddy et al, Ann Rheum Dis, 2021

Antimetabolite immunogenicity **MMF/MPA** greatly blunts humoral responses

• Compared to immunocompetent:

- •MMF/MPA (n=17): 21-fold reduction
- •MTX (n=51): 4.4-fold reduction
- •AZA (n=18): 3.5-fold reduction

Antimetabolite immunogenicity GC machinery virtually absent in kidney transplant patients

- Major GC issues in kidney transplant patients after vaccination (likely similar to MMF patients):
 - No GC B cells (C)
 - No antibody producing cells to Spike (G)
 - Greatly reduced Tfh cells (H)
 - No neutralizing antibodies (J and K)
 - V1: prevax, V2: after 1st dose, V3: after 2nd dose

bDMARD/tsDMARD immunogenicity

BCDT virtually eliminates humoral responses

- Compared to immunocompetent:
 - •BCDT (n=21): 57.7-fold reduction
 - •JAKi (n=15): 8.6-fold reduction
 - TNFi (n=68): 2.3-fold reduction (we'll come back to TNFi later...)

Boekel et al, Lancet Rheumatol, 2021 Braun-Moscovici et al, Ann Rheum Dis, 2021 Deepak et al, Ann Intern Med, 2021 Furer et al, Ann Rheum Dis, 2021 Haberman et al, Ann Rheum Dis, 2021 Mahil et al, Lancet Rheumatol, 2021

BCDT immunogenicity Timing may be important (6-9 months?)

- Rituximab
- Ocrelizumab
- Ofatumumab

Humoral responses somewhat associate with presence of peripheral B and T cells in other studies

Moor et al, Lancet Rheumatol, 2021 Stefanski et al, Arthritis Rheumatol, 2021 Schulz et al, Front Immunol, 2021

BCDT immunogenicity Reductions in circulating memory B cells, Tfh cells (albeit modest)

Breakthrough infections

Delta predominance correlated with increased rate of breakthrough infections

	Pre-Delta variant period			Post-Delta variant period			
Patient group	Total person-months	No. of breakthrough infection cases	Incidence rate per 1000 person-months (95% CI) ^a	Total person-months	No. of breakthrough infection cases	Incidence rate per 1000 person-months (95% CI) ^a	
Partial vaccination							
Overall	553 478	2165	2.9 (2.9-2.9)	218 443	1562	9.6 (9.5-9.7)	
No immune dysfunction	524 821	2007	2.8 (2.8-2.9)	205 139	1433	9.3 (9.2-9.4)	
HIV infection	7010	37	3.6 (3.6-3.7)	3354	26	11.9 (11.4-12.4)	
MS	2418	<20 ^b	3.5 (3.5-3.6)	954	<20 ^b	11.6 (10.8-12.4)	
RA	10718	46	3.7 (3.7-3.8)	4003	27	12.2 (11.8-12.6)	
SOT	7007	66	6.3 (6.2-6.4)	4164	55	20.6 (19.4-21.8)	
BMT	1503	<20 ^b	3.4 (3.3-3.5)	829	<20 ^b	11.2 (10.3-12.2)	
Full vaccination							
Overall	1 501 418	2808	2.2 (2.2-2.2)	2 162 800	16 382	7.3 (7.3-7.4)	
No immune dysfunction	1 423 568	2484	2.2 (2.2-2.2)	2 053 050	15255	7.1 (7.1-7.2)	
HIV infection	17 336	45	2.8 (2.8-2.8)	26844	250	9.1 (8.8-9.4)	
MS	6568	<20 ^b	2.7 (2.7-2.8)	9644	85	8.9 (8.4-9.3)	
RA	32 847	103	2.8 (2.8-2.9)	43044	408	9.3 (9.1-9.6)	
SOT	17 314	137	4.8 (4.7-4.9)	24647	343	15.7 (15.1-16.4)	
BMT	3786	21	2.6 (2.6-2.7)	5581	41	8.6 (8.0-9.1)	

Table 2. COVID-19 Breakthrough Infection Among Patients With Immune Dysfunction

Abbreviations: BMT, bone marrow transplantation; MS, multiple scierosis; N3C, National COVID Cohort Collaborative; RA, rheumatoid arthritis; SOT, solid organ transplant.

^a Estimated incidence rate was based on unadjusted Poisson regression model.

INSC policy requires all cells that contain rewer than 20 persons to be reported. as <20.

Breakthrough infections Increased rate of associated with low Ab responses

	Patients with immune-	Patients with immune-	Healthy controls		Odds ratio (95% CI)	р
	diseases on	diseases not on	(n=822)	Humoral determinants analyses (T2B! cohort	only)	
	immunosuppressants	immunosuppressants		Multivariable model (N=2225; 108 events)‡		
	(n= 3207)	(n=985)		No seroconversion after full vaccination	1.00 (ref)	
SARS-CoV-2 breakthrough infe	ction			Seroconversion after full vaccination	0.58 (0.34–0.98)	
Cumulative incidence	148 (5%)	52 (5%)	33 (4%)	Multivariable model (N=1983; 90 events)‡		
Incidence	8.0	9.2	6.6	Anti-RBD titre in AU/mL		
rate, events per 1000 person-				4.000 to <53.025	0.97 (0.50–1.88)	
monuns				53·025 to <126·250	1.55 (0.88–2.73)	
				126.250 to <249.750§	1.00 (ref)	
				≥249.750	0.57 (0.28–1.16)	

Breakthrough infections

Pre-Omicron, vaccine effectiveness very high among immunosuppressed

Rheumatoid a	rthritis	
SARS-CoV-2 positive (n=2127)	SARS-CoV-2 negative (n=34018)	5.9%
Ankylosing sp	ondylitis	
SARS-CoV-2 positive (n=476)	SARS-CoV-2 negative (n=7387)	6.1%
Psoriasis		
SARS-CoV-2 positive (n=3089)	SARS-CoV-2 negative (n=44110)	6.5%
Inflammatory	howel disease	
SARS-CoV-2	SAKS-CoV-2	5.4%
(n=1702)	(n=29609)	

Severe outcomes Rheumatoid arthri First dose ≥14 da Second dose ≥ 7 Third dose ≥7 da Ankylosing spondy First dose ≥14 da Second dose ≥ 7 Third dose ≥7 da Psoriasis First dose ≥14 da Second dose ≥ 7 Third dose ≥7 da Inflammatory bow First dose ≥14 da Second dose ≥7 Third dose ≥7 da

	Test-positive cases	Test-negative controls	Unadjusted vaccine effectiveness (95% CI)	Adjusted vaccine effectiveness (95% CI)*
itis				
ays	53/305 (17·4%)	6005/17393 (34·5%)	60% (46–70)	74% (63–81)
days	35/287 (12·2%)	14330/25718 (55·7%)	89% (84–92)	92% (88–95)
ays	<6/254 (<2·4%)	453/11841 (3·8%)	NR	88% (48–97)
ylitis				
ays	6/46 (13·0%)	1074/3902 (27.5%)	61% (7-83)	76% (35–91)
days	<6/42 (<14·3%)	2876/5704 (50·4%)	NR	97% (83–99)
ays	<6/41 (<14.6%)	89/2917 (3·1%)	NR	NR†
ays	37/269 (13·8%)	6548/23586 (27.8%)	59% (41–71)	72% (59–82)
days	25/257 (9·7%)	17230/34268 (50·3%)	89% (84–93)	92% (86–95)
ays	<6/232 (<2.6%)	245/17283 (1.4%)	NR	NR†
vel disea	se			
ays	30/173 (17·3%)	4570/15 907 (28·7%)	48% (23–65)	65% (44–78)
days	14/157 (8·9%)	11 560/22 897 (50·5%)	90% (83–94)	94% (88–97)
ays	<6/145 (<4·1%)	300/11637 (2.6%)	NR	NR†

Widdifield et al., Lancet Rheumatol, 2022, PMID: 35441151

Outline

Exploration of the types of immune responses induced by vaccination • The Spike protein: the target for protective immunity Focus on <u>B cell responses</u>: how immunizing with one variant can protect against other

- variants
- The impact of immunosuppression on vaccine-induced immunity
 - Associations of specific MOAs on humoral responses
 - Nuances in antibody quality: lessons from TNF inhibition

 - Impact of holding medications: lessons from MTX

- Discussion on protection against variants of concern
- Early data on preventing severe infection

Role of providing additional doses: lessons from solid organ transplant pts and on BCDT

Pre-exposure prophylaxis: monoclonal antibodies (tixgevimab/cilgavimab)

So you have antibodies: are you protected? Lessons from TNFi users

	No. (%) 3 months after second vaccination below NT_{50} of 1/50				No. (%) 5 ^a or 6 ^b months after second vaccination below NT ₅₀ of 1/50			
Class	Total	WA1/2020 D614G	Wash-B.1.351	B.1.617.2	Total	WA1/2020 D614G	Wash-B.1.351	B.1.617.2
Immunocompetent volunteers	25	0 (0)	4 (16)	2 (8)	24	0 (0)	5 (22)	4 (17)
Individuals with CID	75	14 (19)	26 (35)	27 (36)	43	14 (33)	24 (56)	25 (58)
TNFi	12	3 (27)	8 (67)	8 (67)	7	5 (71)	6 (86)	7 (100)
Antimetabolites	12	2 (17)	5 (42)	4 (33)	5	2 (40)	2 (40)	2 (40)
Antimalarials	8	0 (0)	1 (12.5)	3 (37.5)	7	1 (14)	4 (57)	3 (43)
Anti-integrin	9	0 (0)	1 (11)	0 (0)	3	0 (0)	0 (0)	1 (33)
NSAIDs	9	1 (11)	1 (11)	1 (11)	5	1 (20)	2 (40)	2 (40)
Anti-IL-23	9	1 (11)	2 (22)	2 (22)	3	0 (0)	1 (33)	1 (33)
^a Samples from individuals with (^b Immunocompetent volunteer s	CID were amples v	collected 5 months af vere collected 6 month	ter completion of ns after completic	f vaccination. on of vaccinati	on.			

Immunosuppression generally reduced cross-variant neutralization titers, but those on TNFi had substantial issues

Outline

Exploration of the types of immune responses induced by vaccination • The Spike protein: the target for protective immunity Focus on <u>B cell responses</u>: how immunizing with one variant can protect against other

- variants
- The impact of immunosuppression on vaccine-induced immunity
 - Associations of specific MOAs on humoral responses
 - Nuances in <u>antibody quality</u>: lessons from TNF inhibition

 - Impact of holding medications: lessons from MTX

- Discussion on protection against variants of concern
- Early data on preventing severe infection

Role of providing additional doses: lessons from solid organ transplant pts and on BCDT

Pre-exposure prophylaxis: monoclonal antibodies (tixgevimab/cilgavimab)

Beneficial effects of boosting

Vast majority of immunosuppressed improved Ab titers after 3rd dose

Wieske et al, Lancet Rheumatol, 2022, PMID:35317410

Beneficial effects of boosting All TNFi users restored cross-variant neutralization after 3rd dose

Chen et al, Med, 2021, PMID: 34812429

Revisiting boosting: can it help everyone? Patients with SOT continue to improve Ab titers with 4th dose

Caillard et al, Ann Int Med, 2022, PMID: 35007148 Alejo et al, Transplantation, 2021, PMID: 34428188 Kamar et al, JAMA Netw Open, 2021, PMID: 34817587

D4

Revisiting boosting: can it help everyone? Majority on BCDT with poor responses still have poor responses post-booster

Jyssum et al, Lancet Rheumatol, 2022, PMID: 34977602

Outline

Exploration of the types of immune responses induced by vaccination • The Spike protein: the target for protective immunity Focus on <u>B cell responses</u>: how immunizing with one variant can protect against other

- variants
- The impact of immunosuppression on vaccine-induced immunity
 - Associations of specific MOAs on humoral responses
 - Nuances in <u>antibody quality</u>: lessons from TNF inhibition

 - Impact of holding medications: lessons from MTX

- Discussion on protection against variants of concern
- Early data on preventing severe infection

Role of providing additional doses: lessons from solid organ transplant pts and on BCDT

Pre-exposure prophylaxis: monoclonal antibodies (tixgevimab/cilgavimab)

Holding meds: can it also help? Neutralizing Ab titers to D614G improve with holding MTX for ≥10 days

De Silva et al, Ann Rheum Dis, 2022, PMID: 35288376

Outline

Exploration of the types of immune responses induced by vaccination • The Spike protein: the target for protective immunity Focus on <u>B cell responses</u>: how immunizing with one variant can protect against other

- variants
- The impact of immunosuppression on vaccine-induced immunity
 - Associations of specific MOAs on humoral responses
 - Nuances in <u>antibody quality</u>: lessons from TNF inhibition

 - Impact of holding medications: lessons from MTX

- Discussion on protection against variants of concern
- Early data on preventing severe infection

Role of providing additional doses: lessons from solid organ transplant pts and on BCDT

Pre-exposure prophylaxis: monoclonal antibodies (tixgevimab/cilgavimab)

Tixagevimab/cilgavimab (Evusheld)

Concerns about ability to neutralize Omicron subvariants: Is it useless?

May 31, 2022

Evusheld Appears Less Effective Against Omicron for Patients With Blood Cancer

Jonathan Goodman, MPhil

Tixagevimab-cilgavimab (Evusheld) appears less effective against the omicron variant of SARS-CoV-2 in patients with hematologic cancer, according to research published in Cancer Cell.

Researchers found that a single 150 mg dose of tixagevimab-cilgavimab demonstrated neutralizing activity against wild-type SARS-CoV-2 but not the omicron variant.

The current recommended dose, 300 mg, seemed to be more effective against omicron than the 150 mg dose, but results varied.

against wild-type SARS-CoV-2 but not the omicron variant. Source: Getty Images

https://www.cancertherapyadvisor.com/home/cancer-topics/hematologic-cancers/covid19-omicron-blood-cancer-evusheld-appears-less-effective/ Accession date: 14 July 2022

Tixagevimab/cilgavimab (Evusheld) Background

- Two mAbs (IgG1κ) with high affinity binding to distinct epitopes on spike protein
 - Kd tixagevimab = 2.76 pM
 - Kd cilgavimab = 13.0 pM
 - Kd combination = 13.7 pM
- Each Ab (300 mg, 1.5 mL) administered separately IM (gluteal ideally)
- Modifications to Fc domain nearly tripled IgG t_{1/2}

 Table 4
 Summary of PK Parameters and Properties of Tixagevimab and Cilgavimab

 Following a Single EVUSHELD Intramuscular Dose

PK Parameters	Tixagevimab	Cilgavi
C _{max} (µg/mL)*	16.5 (35.6)	15.3 (3
T _{max} (day) [†]	14.0 (3.1 – 30)	14.0 (3.1
C1 (μg/mL) [‡]	4.4 (92.2)	3.9 (94
C ₁₅₀ (µg/mL)§	6.6 (25.6)	5.5 (35
C ₂₁₀ (µg/mL) [¶]	4.0 (31.6)	3.9 (37
AUC _{inf} (day•µg/mL)	2529 (30.2)	2133 (3
Absorption		
Bioavailability [#]	68.5	65.8
Distribution		
Apparent Volume of	7.7 (1.97)	8.7 (2.
Distribution (L)#		
Elimination		
Half-life (days) [#]	87.9 (13.9)	82.9 (1
Apparent Clearance (L/day)#	0.062 (0.019)	0.074 (0
Metabolism	Catabolic pathways; Same	manner as endoge
Excretion	Not likely to under	go renal excretion

* Geomean (geometric %CV)

[†] Median (range)

[‡] Observed geomean (geometric %CV) concentration 1 day after dosing

§ Observed geomean (geometric %CV) concentration 150 days after dosing

[¶] Observed geomean (geometric %CV) concentration 210 days after dosing

[#] Arithmetic mean (SD)

Tixagevimab/cilgavimab (Evusheld) FDA EUA granted for use as PrEP 08 Dec 2021

- For use in individuals ≥ 12 yo weighing ≥ 40 kg
- Broad indications for use

exposure to an individual infected with SARS-CoV-2 and

- Who have moderate to severe immune compromise due to a medical condition or receipt of Ο immunosuppressive medications or treatments **and** may not mount an adequate immune response to COVID-19 vaccination¹ or
- For whom vaccination with any available COVID-19 vaccine, according to the approved or authorized schedule, is not recommended due to a history of severe adverse reaction (e.g., severe allergic reaction) to a COVID-19 vaccine(s) and/or COVID-19 vaccine component(s).

Who are not currently infected with SARS-CoV-2 and who have not had a known recent

Tixagevimab/cilgavimab (Evusheld)

Wide range of medical conditions eligible, similar to vaccine

inadequate immune response to COVID-19 vaccination include but are not limited to¹:

- Active treatment for solid tumor and hematologic malignancies
- Receipt of solid-organ transplant and taking immunosuppressive therapy
- Receipt of chimeric antigen receptor (CAR)-T-cell or hematopoietic stem cell transplant (within 2 years of transplantation or taking immunosuppression therapy)
- Moderate or severe primary immunodeficiency (e.g., DiGeorge syndrome, Wiskott-Aldrich \bullet syndrome)
- Advanced or untreated HIV infection (people with HIV and CD4 cell counts <200/mm³, history of an AIDS-defining illness without immune reconstitution, or clinical manifestations of symptomatic HIV)
- Active treatment with high-dose corticosteroids (i.e., ≥20 mg prednisone or equivalent per day when administered for ≥ 2 weeks), alkylating agents, antimetabolites, transplant-related immunosuppressive drugs, cancer chemotherapeutic agents classified as severely immunosuppressive, tumor-necrosis (TNF) blockers, and other biologic agents that are immunosuppressive or immunomodulatory (e.g., B-cell depleting agents)
- No utility of Ab testing

rollout

Medical conditions or treatments that may result in moderate to severe immune compromise and an

Tixagevimab/cilgavimab (Evusheld) Generally, mAbs for SARS-CoV-2 have issues binding to Omicron RBD

COV2-2196: parent mAb of AZD8895 (tix) COV2-2130: parent mAb of AZD1061 (cil) S309: parent mAb of VIR-7831 (sotrovimab)

	333	340	\diamond	350		360		370	380	390	
B.1.1.529 RBD	TNLCI	P F <mark>D</mark> E V I	FŇATRF	ASVYA	WNRKRI	SNCV	ADYSV	LYNLAF	FFTFKCYG	VSPTKLNDL	CFTNVYA
COV2-2196	TNLCI	PFGEVI	FNATRE	ASVYA	WNRKRI	SNCV	ADYSV	LYNSAS	FSTFKCYG	VSPTKLNDL	CFTNVYA
COV2-2130	TNLCI	PFGEVI	FNA <mark>TR</mark> F	ASVYA	WNRKRI	SNCV	ADYSV	LYNSAS	FSTFKCYG	VSPTKLNDL	CFTNVYA
S309	TNLCI	PFGEVI	FNATR	ASVYA	WNRKRI	SNCV	ADYSV	LYNSAS	FSTFKCYG	VSPTKLNDL	CFTNVYA
REGN10987	TNLCI	PFGEVI	FNATR	ASVYA	WNRKRI	SNCV	ADYSV	LYNSAS	FSTFKCYG	VSPTKLNDL	CFTNVYA
REGN10933	TNLCI	PFGEVI	FNATR	ASVYA	WNRKRI	SNCV	ADYSV	LYNSAS	FSTFKCYG	VSPTKLNDL	CFTNVYA
LY-CoV555	TNLCI	PFGEVI	FNATRE	ASVYA	WNRKRI	SNCV	ADYSV	LYNSAS	FSTFKCYG	VSPTKLNDL	CFTNVYA
LY-CoV016	TNLCI	PFGEVI	FNATR	ASVYA	WNRKRI	SNCV	ADYSV	LYNSAS	FSTFKCYG	VSPTKLNDL	CFTNVYA
CT-P59	TNLC	PFGEVI	FNATR	ASVYA	WNRKRI	SNCV	ADYSV	LYNSAS	FSTFKCYG	VSPTKLNDL	CFTNVYA
SABS2-38	TNLC	PFGEVI	FNATRE	ASVYA	WNRKRI	SNCV	ADYSV	LYNSAS	FSTFKCYG	VSPTKLNDL	CFTNVYA
0/11/02/00											
	400		410		420		430		440	450	460
B.1.1.529 RBD	DSFVI	RGDE	VRQIA	GQTGN	IADYNY	KLPD	DFTGC	VIAWNS	NKLDSKVS	GNYNYLYRL	FRKSNLK
COV2-2196	DSFVI	RGDE	VRQLA	P G Q T G K	IADYNY	KLPD	DFTGC	VIAWNS	NNLDSKVG	GNYNYLYRL	FRKSNLK
COV2-2130	DSFV	RGDE	VRQLAR	PGQTGK	IADYNY	KLPD	DFTGC	VIAWNS	NNLDSKVG	GNYNYLYRL	FRKSNLK
S309	DSFV	RGDE	VRQLA	GQTGK	IADYNY	KLPD	DFTGC	VIAWNS	NNL DSKVG	GNYNYLYRL	FRKSNLK
BEGN10987	DSFV	RGDE	VRQLA	GOTGK	IADYNY	KLPD	DFTGC	VIAWNS	NNL DSKVG	GNYNYLYRL	FRKSNLK
BEGN10933	DSFV	RGDE	VRQLA	GOTGK	IADYNY	KLPD	DFTGC	VIAWNS	NNLDSKVG	GNYNYLYRL	FRKSNLK
LY-CoV555	DSEVI	RGDE	VRQLA	GOTGK	LADYNY	KLPD	DFTGC	VIAWNS	NNLDSKVG	GNYNYLYRL	FRKSNLK
LY-CoV016	DSEV	BGDE		GOTGK		KLPD	DFTGC	VIAWNS	NNLDSKVG	GNYNYLYBL	FRKSNLK
CT-P59	DSEV	BGDE	VRQLA	PGOTGK	LADYNY	KLPD	DETGC	VIAWNS	NNLDSKVG	GNYNYLYBL	FRKSNLK
SABS2-38	DSEVI	BGDE	VRQLA	PGOTGK	IADYNY	KLPD	FTGC	VIAWNS	NNLDSKVG	GNYNYLYBL	FRKSNLK
0/11/02/00	50			₩	,					4 4 4	&
		470		480		490		500	510	520	527
B.1.1.529 RBD	PFERI	DISTEI	YQAG	KPCNG	VAGFNO	CYFPL	SYSF	RPTYGV	GHQPYRVV	VLSFELLHA	PATVCGP
COV2-2196	PFERI	DISTEI	YQAG	STPCNG	VEGFNO	YFPL	SYGF	QPTNGV	GYQPYRVV	VLSFELLHA	PATVCGP
COV2-2130	PFERI	DISTEI	YQAGS	STPCNG	VEGFNO	CYFPL	QSYGF	QPTNGV	GYQPYRVV	VLSFELLHA	PATVCGP
S309	PFERI	DISTEI	YQAGS	STPCNG	VEGFNO	CYFPL	QSYGF	QPTNGV	GYQPYRVV	VLSFELLHA	PATVCGP
BEGN10987	PFERI	DISTEI	YQAGS	STPCNG	VEGENO	YFPL	QSYGF	QPTNGV	GYQPYRVV	VLSFELLHA	PATVCGP
BEGN10933	PFERI	DISTEI	YQAG	TPCNG	VEGENO	YFPL	OSYGE	QPTNGV	GYQPYRVV	VLSFELLHA	PATVCGP
LY-CoV555	PFERI		YQAG	TPCNG	VEGENO	YFPL	SYGE	QPTNGV	GYOPYBVV	VLSFELLHA	PATVCGP
LY-CoV016	PFERI	DISTE	YQAG	TPCNG	VEGEN	YFPL	OSYGE	QPTNGV	GYQPYRVV	VLSFELLHA	PATVCGP
CT-P59	PFERI		YQAG	TPCNG	VEGENO	YEPL	QSYGE	QPTNGV	GYQPYRVV	VLSFELLHA	PATVCGP
SARS2-38	PFERI	DISTE	YQAG	TPCNG	VEGENO	YFPL	QSYGF	QPTNGV	GYQPYRVV	VLSFELLHA	PATVCGP
			*		**	★ .		$\Rightarrow \Rightarrow $	\mathbf{A}		

VanBlargan et al, Nat Med, 2022, PMID: 35047673

Tixagevimab/cilgavimab (Evusheld) Generally, mAbs for SARS-CoV-2 have issues binding to Omicron

Vero-TMPRSS2 cells SARS2-COV-2 mAb WA1/2020 B.1.1.529 D614G COV2-2196 6 913 COV2-2130 32 381 COV2-2196/COV2-2130 147 12 >10,000 REGN10987 31 >10,000 REGN10933 11 REGN10933/REGN10987 9 >10,000 >10,000 LY-CoV555 10 LY-CoV016 72 >10,000 LY-CoV555/LY-CoV016 19 >10,000 S309 202 373 CT-P59 >10,000 2 SARS2-38 8,520 5

g

147/12 = **12.5-fold reduction** in EC50 against Omicron for Evusheld

COV2-2196: parent mAb of AZD8895 (tix) COV2-2130: parent mAb of AZD1061 (cil) S309: parent mAb of VIR-7831 (sotrovimab)

Cilgavimab unique in its binding of Spike Binding site largely away from RBM of Spike

COV2-2196: parent mAb of AZD8895 (tix) COV2-2130: parent mAb of AZD1061 (cil) S309: parent mAb of VIR-7831 (sotrovimab)

Tixagevimab/cilgavimab (Evusheld) **Omicron neutralization**

- Is that bad? Is Evusheld DOA?
- Remember, IC50 is 147 ng/mL against BA.2
- At 7 months post-administration, serum Ab levels ~27x higher than **IC50**
- Thinking we should be OK?

Table 4 Summary of PK Parameters and Properties of Tixagevimab and Cilgavimab Following a Single EVUSHELD Intramuscular Dose

PK Parameters	Tixagevimab	Cilgavimat
C _{max} (µg/mL)*	16.5 (35.6)	15.3 (38.5)
T _{max} (day) [†]	14.0 (3.1 – 30)	14.0 (3.1 – 6
C1 (µg/mL) [‡]	4.4 (92.2)	3.9 (94.4)
C ₁₅₀ (µg/mL)§	6.6 (25.6)	5.5 (35.2)
C ₂₁₀ (µg/mL) [¶]	4.0 (31.6)	3.9 (37.1)
AUC _{inf} (day•µg/mL)	2529 (30.2)	2133 (31.7)
osorption		
Bioavailability [#]	68.5	65.8
stribution		
Apparent Volume of Distribution (L) [#]	7.7 (1.97)	8.7 (2.73)
imination		
Half-life (days) [#]	87.9 (13.9)	82.9 (12.3)
Apparent Clearance (L/day)#	0.062 (0.019)	0.074 (0.028
etabolism	Catabolic pathways; Same	manner as endogenou
cretion	Not likely to under	go renal excretion
amagin (a a amatria 0/ C)/)		

Geomean (geometric %CV)

[†] Median (range)

[‡] Observed geomean (geometric %CV) concentration 1 day after dosing

[§] Observed geomean (geometric %CV) concentration 150 days after dosing

[¶] Observed geomean (geometric %CV) concentration 210 days after dosing

[#] Arithmetic mean (SD)

Real-world tix/cil experience appears good **BCDT** patients fully vaccinated with documented COVID-19

Patients Who Received anti-SARS-CoV-2 mAb Treatment (n=21)

	Ordinal Scale Legend	
Ordinal Scale 1 2	1 Ambulatory (no limita- tion)	
 3 4 5 	2 Ambulatory (with limita- tion)	_
 6 7 8 	3 Hospitalized (no O ₂ , no medical treatment)	
	4 Hospitalized (no O ₂ , but requiring ongoing medical treatment)	
Ondinal	5 Hospitalized (any O ₂)	
Scale 1 2	6 Hospitalized (NIV or HFNC)	
5	7 Hospitalized (IMV or ECMO)	
7, 8)	8 Death	Colobroco ot ol

Calabrese et al, Arthritis Rheumtol, 2022, PMID: 35791921

Conclusions

- Most immunosuppressed patients with IMID will mount <u>acute</u> humoral responses
 - •Greatest risk of poor responses:
 - •BCDT >> MMF >> GCC > MTX/AZA/JAKi/TNFi > immunocompetent
 - •T cells in BCDT patients present, but likely are dysfunctional and may not be protective
 - Intensive immunosuppressive therapies destroy GC responses
 - •TNFi associates with poorer cross-variant neutralization in the long-term, which restores with boosting (clinical impact of impaired Fc effector functions?)
- •How to mitigate, especially for the B cell depleted?
 - Keep vaccinating: solid organ transplant patients eventually make responses
 - Pre-exposure prophylaxis (PrEP): Tixagevimab/cilgavimab (Evusheld)!! Probably the single best option for many of our patients in the short-term
 - Drug holidays?

Research Letter | Infectious Diseases Comparison of SARS-CoV-2 Antibody Response After 2-Dose mRNA-1273 vs BNT162b2 Vaccines in Incrementally Immunosuppressed Patients

Jonathan Mitchell, MBBS; Caoilfhionn M. Connolly, MD, MSc; Teresa Po-Yu Chiang, MD, MPH; Jennifer L. Alejo, MD; William A. Werbel, MD; Dorry L. Segev, MD, PhD; Allan B. Massie, PhD, MHS

Table 2. Anti-Receptor Binding Domain Respo	nse
by Vaccine Platform	

Antibody titer, U/mL ^a	BNT162b2, %	mRNA-1273, %	IRR (95% CI)	P value
Patients with RMDs not r	eceiving immunosuppre	ession (n = 220) ^b		
≥50	98.3	95.1	0.97 (0.92-1.02)	.20
≥100	95.8	95.1	0.99 (0.94-1.05)	.81
≥250	91.5	93.1	1.02 (0.94-1.10)	.67
Patients with RMDs recei	ving immunosuppressio	on (n = 938) ^b		
≥50	75.4	83.1	1.10 (1.03-1.17)	.005
≥100	72.4	82.4	1.13 (1.06-1.21)	<.001
≥250	60.5	79.2	1.30 (1.20-1.42)	<.001
SOTRs not receiving myc	ophenolic acid or myco	phenolate mofetil (n = 260) ^c	
≥50	59.1	78.9	1.38 (1.16-1.64)	<.001
≥100	54.6	77.3	1.47 (1.22-1.77)	<.001
≥250	44.7	66.4	1.56 (1.24-1.96)	<.001
SOTRs receiving mycoph	enolic acid or mycopher	nolate mofetil (n = 437) ^c		
≥50	12.8	21.8	1.69 (1.11-2.58)	.02
≥100	7.7	18.8	2.40 (1.42-4.07)	.008
≥250	4.3	11.4	2.62 (1.28-5.37)	.01

e to 2-Dose Messenger RNA SARS-CoV-2 Vaccination Stratified